Reconstruction of Separably Categorical Metric Structures

نویسندگان

  • Itay Ben-Yaacov
  • Adriane Kaïchouh
چکیده

We extend Ahlbrandt and Ziegler’s reconstruction results ([AZ]) to the metric setting: we show that separably categorical structures are determined, up to bi-interpretability, by their automorphism groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of Metric Spaces by Partial Metric Spaces

Partial metrics are generalised metrics with non-zero self-distances. We slightly generalise Matthews' original definition of partial metrics, yielding a notion of weak partial metric. After considering weak partial metric spaces in general, we introduce a weak partial metric on the poset of formal balls of a metric space. This weak partial metric can be used to construct the completion of clas...

متن کامل

Lawvere Completion and Separation Via Closure

Bill Lawvere’s 1973 milestone paper “Metric spaces, generalized logic, and closed categories” helped us to detect categorical structures in previously unexpected surroundings. His revolutionary idea was not only to regard individual metric spaces as categories (enriched over the monoidal-closed category given by the non-negative extended real half-line, with arrows provided by ≥ and tensor by +...

متن کامل

Convergence and quantale-enriched categories

Generalising Nachbin's theory of ``topology and order'', in this paper we   continue the study of quantale-enriched categories equipped with a compact   Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces   with ultrafilter-quantale-enriched categories, and show that the presence of a   compact Hausdorff topology guarantees Cauchy completeness and (suitably   defined) ...

متن کامل

Computably isometric spaces

We say that an uncountable metric space is computably categorical if every two computable structures on this space are equivalent up to a computable isometry. We show that Cantor space, the Urysohn space, and every separable Hilbert space are computably categorical, but the space C[0, 1] of continuous functions on the unit interval with the supremum metric is not. We also characterize computabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Log.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2016